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Abstract

Clinical psychological assessment often relies on self-report, interviews,
and behavioral observation, methods that pose challenges for reliability,
validity, and scalability. Computational approaches offer new oppor-
tunities to analyze expressive behavior (e.g., facial expressions, vocal
prosody, and language use) with greater precision and efficiency. This
paper provides an accessible conceptual framework for understanding
how methods from computer vision, speech signal processing, and natu-
ral language processing can enhance clinical assessment. We outline the
goals, frameworks, and methods of both clinical and computational ap-
proaches, and present an illustrative review of interdisciplinary research
applying these techniques across a range of mental health conditions.
We also examine key challenges related to data quality, measurement,
interdisciplinarity, and ethics. Finally, we highlight future directions for
building systems that are robust, interpretable, and clinically meaning-
ful. This review is intended to support dialogue between clinical and
computational communities and to guide ongoing research and devel-
opment at their intersection.
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1. Introduction
In the absence of reliable and accessible biomarkers for most psychiatric conditions (Aftab
& Sharma 2021, Venkatasubramanian & Keshavan 2016), clinical assessment continues to
rely heavily on client self-reports, clinical interviews, and informal behavioral observations
(Meyer et al. 2001). However, there are numerous threats to the reliability, validity, and
scalability of each of these assessment procedures.

Client self-report is a valuable source of phenomenological information and is relatively
inexpensive to collect (Stone et al. 2000). However, it can be limited by clients’ reading abil-
ity, idiosyncratic understanding of items and response options, reactivity to being assessed,
and level of insight into their own functioning (Althubaiti 2016). Client report can be easily
scaled across large numbers of clients with computerized administration and scoring. It can
also be scaled over time (i.e., longitudinally) using ecological momentary assessment (Shiff-
man et al. 2008). However, care must be taken as too frequent or extensive administration
can be burdensome for clients and may lead them to disengage from assessment.

When paired with standardized protocols, clinical interviews tend to be more reliable
and less dependent on client understanding (Meyer et al. 2001). However, maintaining
these benefits requires substantial and ongoing clinician training. Interviews are also more
time-intensive and costly to administer, which limits their feasibility and scalability.

Finally, clinician observation of clients’ behavior (e.g., facial expressions, speech, thought
processes, and motor activity) has long been a staple of clinical assessment, offering valu-
able insights into affective, cognitive, and social functioning (Bunney & Hamburg 1963,
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Norris et al. 2016). As with interviews, however, these observations are difficult to quantify
reliably without formal tools and training, and contextual factors may complicate interpre-
tation (Kirmayer 2005, Barrett 2022). Manual approaches also share the same scalability
challenges, given their reliance on clinician time and judgment.

To address these issues, computational approaches can be used to improve the reliability,
validity, and scalability of observational assessments of clients’ expressive behavior, i.e.,
their observable verbal and nonverbal behaviors that communicate internal states. Recent
advances in computer science, affective computing, and computational linguistics have made
it possible to estimate clients’ behavioral patterns with greater accuracy and efficiency,
including body and face movements, vocal prosody and dynamics, and linguistic content
and style. Compared to manual methods, these approaches provide more consistent and
fine-grained measurement, and their capacity to combine scale with methodological rigor
enables broader, more adaptive, and contextually responsive forms of assessment.

In this paper, we aim to provide an accessible conceptual framework for understanding
how computational tools can enhance the clinical assessment of expressive behavior. Rather
than offering a technical deep dive, our goal is to clarify key ideas, highlight points of inter-
section between clinical and computational perspectives, and organize recent advances into
an intuitive structure. We begin with an overview of the goals, frameworks, and methods
that characterize assessment in clinical psychology. Next, we review how techniques from
computer vision, speech signal processing, and natural language processing are being used
to analyze expressive behavior. We then present an illustrative review of recent research
that has applied these approaches in clinical settings, highlighting their utility and current
limitations. Finally, we discuss the promises and challenges of integrating these methods
into clinical research and practice. This paper is intended for an interdisciplinary audience,
including clinical scientists seeking to understand emerging computational methods and
computer scientists interested in mental health applications.

2. Clinical Assessment
Clinical assessment is the process of systematically gathering and interpreting information
about an individual’s symptoms and functioning, often to inform and guide treatment.
Clients’ affect, behavior, and cognition are of foremost interest in clinical psychology and
psychiatry, as they constitute the core components of mental health.

2.1. Assessment Goals
Although terminology may differ across disciplines, the primary goals of assessment in
clinical practice can be usefully organized into four broad objectives: screening, diagnosis,
prognosis, and monitoring. We briefly review each of these core objectives and then describe
several additional goals that are often emphasized in more comprehensive assessments.

First, assessment may aim to quickly identify individuals who are at elevated risk for
psychopathology and may benefit from further evaluation, supportive resources, or refer-
ral to treatment. This goal, known as screening, is common in primary care, schools,
and workplace wellness programs (e.g., Joseph & Hermann 1998, Kim et al. 2022, Søvold
et al. 2021). Screening tools are typically designed for brevity over precision and are often
calibrated to be overly inclusive, reducing the risk of missing someone in need.

Screening: An
assessment goal
focused on quickly
identifying people at
risk who may need
further evaluation.

Second, assessment may aim to confirm the presence or severity of psychopathology by
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integrating more comprehensive information and ruling out alternative explanations (e.g.,
Spitzer 1983, Fernandes et al. 2017). These diagnostic assessments are widely used in
clinical practice (e.g., to guide case conceptualization and treatment planning), by insurers
(e.g., to determine reimbursement eligibility), and in legal contexts (e.g., for disability
claims or litigation). Although they require more time and training than screening tools,
diagnostic assessments are essential in high-stakes contexts.

Diagnosis: An
assessment goal
focused on
identifying specific
conditions by
confirming their
presence and
excluding other
possible
explanations.

Third, assessment may aim to predict a person’s future outcomes and how their con-
dition is likely to change over time (e.g., Croft et al. 2015, Fusar-Poli et al. 2018). These
prognostic assessments are often used in clinical settings to guide decisions about treat-
ment type, intensity, and how to involve clients and families in care planning. They also
inform follow-up care, such as how often a client should be re-assessed. Prognostic models
typically draw on risk and protective factors, which help clarify the conditions that shape
recovery and long-term outcomes.

Prognosis: An
assessment goal
focused on
predicting future
outcomes and the
course of a person’s
condition over time.

Finally, assessment may aim to track how a person’s condition is actually changing
over time (e.g., Boswell et al. 2015, Malasinghe et al. 2019). This goal is often referred to
as monitoring and is central to modern, data-informed approaches to care (Lewis et al.
2019). Monitoring can help evaluate whether treatment is producing the desired effects,
detect early warning signs of symptom relapse, and identify fluctuations in mental health
that correspond to life events, stressors, or environmental changes. When implemented
effectively, monitoring can enhance shared decision-making, improve treatment precision,
and support more responsive care. Moreover, it provides the longitudinal data needed to
test and refine prognostic models by comparing predicted outcomes with actual trajectories.

Monitoring: An
assessment goal
focused on tracking
changes in a person’s
condition over time,
such as during or
after treatment.

During an in-depth assessment, clinicians may also strive to: evaluate the individual’s
risk of harm to self and others (e.g., Jobes 2023, Singh et al. 2011), identify the individual’s
strengths and resources for coping with condition-related stress (Tedeschi & Kilmer 2005),
understand cultural and contextual influences on the individual’s behaviors and functioning
(Ryder et al. 2011, Kraemer et al. 2003), and build a collaborative relationship with the
individual characterized by mutual trust, empathy, and respect (e.g., Hilsenroth et al. 2004,
Rakel 2016). There are even strategies for adding clinical interventions to the procedure,
thus creating “therapeutic assessments” (e.g., Finn & Tonsager 1997, Finn 2007).

2.2. Assessment Frameworks
Given that clinical assessment seeks to describe clients’ symptoms and functioning, it is
inherently linked to nosology—the systems used to define and organize these phenomena.
Yet, how best to construct a nosological framework that accurately captures such patterns
of psychological disturbance remains a topic of ongoing debate (First 2015, Rief et al. 2023).
Thus, we briefly review the primary nosological approaches currently in use.

The first, and currently dominant, approach organizes psychopathology into discrete
“disorders” or “syndromes” that are defined by specific criteria (e.g., obsessive-compulsive
disorder and schizophrenia). Disorders are viewed as separate disease entities that are dif-
ferent in kind from normal functioning. Examples include the Diagnostic and Statistical
Manual of Mental Disorders (DSM; American Psychiatric Association 2022) and the In-
ternational Classification of Diseases (ICD; World Health Organization 2019). Assessment
under this approach involves determining the presence or absence of diagnostic criteria and
then assigning categorical diagnostic labels.

A second approach is that of the Research Domain Criteria (RDoC; Insel et al.
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Table 1 Overview of Assessment Frameworks

Framework Development Objective Conceptual Units
DSM & ICD Top-Down Descriptive Diagnostic Categories
RDoC Top-Down Mechanistic Functional Dimensions
HiTOP Bottom-Up Descriptive Hierarchical Dimensions
Network Theory Bottom-Up Mechanistic Causal Interactions

2010, Cuthbert & Insel 2013, Cuthbert 2022), which characterizes psychopathology in
terms of transdiagnostic domains of behavior and functioning (e.g., cognitive, social,
and arousal/modulatory systems). It emphasizes neurobiological mechanisms (e.g., genes,
molecules, and circuits) and argues that psychopathology differs only in degree from nor-
mal functioning. Although this approach is intended to guide research rather than clinical
practice, assessment would involve collecting biological and behavioral data and integrating
them to assign dimensional scores on domains and constructs (Insel 2014).

A third approach is that of the Hierarchical Taxonomy of Psychopathology (HiTOP;
Kotov et al. 2017, Krueger et al. 2018), which organizes maladaptive traits and symptoms
into a hierarchy of dimensions with varying degrees of specificity (e.g., performance anxiety
is a specific symptom within the fear subfactor of the internalizing spectrum). HiTOP also
argues that psychopathology differs only in degree from normal functioning; however, it
adopts an empirical, quantitative method to define its dimensions and focuses more on the
observed co-occurrence of symptoms than underlying mechanisms. Assessment under this
approach involves measuring various traits and symptoms and then calculating a profile of
dimensional scale scores at each level of the hierarchy (Simms et al. 2022).

Finally, the emerging Network Theory argues that, rather than being the effects of
underlying diseases, psychiatric symptoms cause each other (Borsboom 2008, 2017, Cramer
et al. 2010). Mental disorders, then, emerge from the interconnected network of causal
interactions between symptoms (e.g., delusion causes paranoia, which causes hostility and
withdrawal, which together cause social isolation). The structure and dynamics of such
networks can be described using specialized statistical techniques and interrogated to derive
clinical insights (e.g., which symptoms are central to the network). Assessment under this
approach involves identifying which symptoms are present and which network interactions
sustain them; the approach is agnostic to exactly how the symptoms are represented.

Table 1 characterizes each approach by answering the following questions. Was the
framework developed in a primarily top-down (i.e., consensus-based) or bottom-up (i.e.,
data-driven) manner? Does the framework primarily seek to describe psychopathology or
to uncover its underlying mechanisms? What type of conceptual units does it propose?

2.3. Assessment Methods
Numerous methods can be used to gather information during clinical assessment, each with
its own strengths and limitations. In practice, the most informative evaluations draw on
multiple sources of evidence (Spitzer 1983). Here, we highlight the core methods most
frequently employed in everyday clinical practice across diverse populations.

First, assessment may include clinicians’ observational ratings (Bunney & Hamburg
1963, Girard & Cohn 2016, Norris et al. 2016) of the client’s expressive behavior (e.g.,
gestures, expressions, gaze, speech, posture, and motion). In inpatient and residential
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settings, clinicians may have the opportunity to observe such behaviors from afar and across
different contexts. In consulting and outpatient settings, opportunities may be limited to
specific contexts such as assessment interviews and therapy. Observation can yield rich
naturalistic data, can easily incorporate contextual information, and does not require clients
to have insight into their own conditions. However, it can be time-consuming and relies on
clinical judgment, which is often unreliable without standardized rating scales and adequate
training. Another challenge is that some constructs are difficult for clinicians to precisely
quantify, even with training (e.g., tangential thinking or psychomotor slowing).

Second, assessment may include questionnaire ratings (Stone et al. 2000) completed
by clients or informants (e.g., the clients’ family or close others). Such questionnaires often
include items about the presence, frequency, and severity of various symptoms but may
also assess levels of functioning, disability, coping potential, and other relevant constructs.
Brief questionnaires are commonly used in screening and monitoring for many forms of
psychopathology, and longer questionnaires play a vital role in the diagnosis and prognosis
of certain conditions (e.g., personality disorders, developmental disorders, and childhood
behavioral problems). Questionnaires are relatively inexpensive and quick to administer
and interpret, and they capture the valuable perspectives of clients and informants in a
standardized format. However, questionnaire items can be misunderstood, responses may
be influenced by various biases, and accurate completion often requires a high degree of
insight from the respondent (Althubaiti 2016).

Third, assessment may include a psychiatric interview in which clients are directly
asked questions and observed by a trained interviewer (Silberman et al. 2015). Interviews
may be more structured, using pre-determined questions to ensure consistency across clients,
or less structured, with flexible questions tailored to the individual. They may also vary
in focus; some emphasize factual information such as biographical or medical history, while
others explore the client’s personal interpretations and emotional reactions. Structured,
fact-oriented interviews often yield reliable quantitative data, such as diagnostic labels or
severity scores, whereas less structured, feeling-oriented interviews tend to produce rich
qualitative data, including chief complaints and personal histories. Interviews can easily
incorporate clarifying and contextual information, integrating both observational ratings
and client-reported experiences. However, they typically require more time and training
to administer than questionnaires, making them harder to implement and scale in many
clinical and research settings.

Finally, assessment may include structured tasks (Haynes & O’Brien 2000, Kipps &
Hodges 2005) designed to reveal patterns, processes, or deficits in behavior within a con-
trolled environment. These include cognitive tests that assess attention and memory, social
interaction tasks that evaluate communication skills and empathy, emotion elicitation tasks
that probe reactivity and avoidance, and projective tests intended to surface unconscious
fears or desires. Some tasks (e.g., many cognitive tests) have regimented scoring procedures,
while others (e.g., many projective tests) are interpreted in a more creative and subjective
manner. Structured tasks are generally most effective when highly specific and closely tied
to observable symptoms. However, their artificial nature can shape client behavior in ways
that limit how well findings generalize to real-world settings.

Each assessment method offers distinct strengths and limitations, often requiring trade-
offs between capturing behavior in naturalistic settings (ecological validity) and obtaining
tightly controlled, reliable measurements (precision). Emerging computational approaches
may help reconcile these trade-offs by increasing the volume and quality of data that can
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be captured in both structured and real-world environments.

3. Computational Analysis
Computational analysis refers broadly to the use of algorithms and data-driven models
to identify, quantify, and interpret patterns in complex data. In the context of clinical
assessment, it is increasingly used to analyze expressive behavior, such as facial expressions,
vocal signals, and language use, with the goal of generating insights about psychological
states and interpersonal dynamics. These methods complement traditional assessment by
enabling scalable, objective, and fine-grained measurement of behavior. In this section, we
describe the core goals of computational analysis, the frameworks used to operationalize
these goals, and the methods by which expressive behavior is measured and modeled.

3.1. Computational Goals
As we did for clinical assessment, the primary goals of computational analysis can be usefully
organized into four broad objectives: prediction, explanation, discovery, and generation.
These goals guide how data are modeled, what types of features are prioritized, and how
the outputs of computational systems are interpreted and used in practice.

First, prediction refers to the use of computational models to estimate a target variable
(i.e., label) based on observed data, whether from the past, present, or future. Predicting
categorical labels is called “classification” and predicting continuous ones is “regression.”
In the analysis of expressive behavior, prediction can involve estimating expressive signals
from raw inputs or using expressive features to predict clinically relevant outcomes. For
example, models may aim to infer an individual’s emotional state, symptom severity, or
risk of relapse based on their observed behavior. Predictive modeling in this context often
prioritizes accuracy and generalizability, with success typically evaluated based on how well
predictions match known labels in new or unseen data (Yarkoni & Westfall 2017).

Prediction: A
computational goal
focused on
estimating unknown
outcomes from
observed data with
an emphasis on
accuracy and
generalization.

Second, explanation refers to the use of computational models to clarify the mecha-
nisms or processes that give rise to observed behavior. This goal prioritizes interpretability,
theory testing, and causal insight over raw predictive accuracy (Gelman et al. 2014, Pearl
et al. 2016). In the analysis of expressive behavior, explanatory models aim to shed light
on why certain behaviors emerge, what psychological constructs they reflect, and how they
vary across individuals or situations. Success is typically evaluated based on how well the
model aligns with theoretical expectations, supports causal inference, or enhances concep-
tual understanding, rather than how accurately it predicts new observations. The goal is
to produce meaningful, interpretable insights that advance scientific understanding, even if
the models are less complex or less accurate than those built primarily for prediction.

Explanation: A
computational goal
focused on clarifying
the processes that
produce observed
data, prioritizing
interpretability and
causal insight.

Third, discovery refers to the use of computational models to uncover unexpected pat-
terns, structures, or relationships in data. Unlike prediction or explanation, discovery is of-
ten exploratory and hypothesis-generating, which is particularly useful in high-dimensional
or temporally complex behavioral data (Box 1976). In the analysis of expressive behavior,
this may involve identifying recurring patterns across individuals, time points, or contexts
that had not been theorized in advance. These approaches rely on data structure rather
than prior assumptions, enabling flexible exploration of variability within and across indi-
viduals. Discovery can reveal new behavioral dimensions that inform theory and nosology
(Bzdok & Meyer-Lindenberg 2018).

Discovery: A
computational goal
focused on
uncovering novel
patterns or
structures in data
without predefined
hypotheses.

www.annualreviews.org • Computational Assessment 7



Finally, generation refers to the use of computational models to create new content or
simulate phenomena based on patterns learned from data. Rather than merely describing
or predicting observed behavior, generative approaches aim to produce novel outputs that
reflect or respond to real-world psychological, social, or communicative processes. Recent
advances have enabled the highly realistic synthesis of expressive behaviors, including facial
expressions, vocal signals, and language patterns (Ma et al. 2025). At the same time,
generative models can also formalize psychological theories by simulating the mechanisms
that give rise to observed behaviors (Haines et al. 2025). Generative models thus serve both
practical and theoretical aims: they can synthesize expressive behaviors for use in clinical
training, adaptive assessment, and decision support, and they can simulate psychological
processes to support theory development (Shortliffe & Sepúlveda 2018).

Generation: A
computational goal
focused on creating
synthetic data that
mimic real-world
behaviors or
phenomena.

3.2. Computational Frameworks
Three computational frameworks are commonly used to quantify expressive behavior. Each
is designed to operate on a distinct modality of input data (i.e., video, audio, or text) and
applies specialized techniques to extract, model, and interpret behavioral signals. Before
discussing specific methods or research findings when applied to clinical assessment, we
provide a brief overview of each framework and the behavioral signals it captures.

First, computer vision (CV) is a computational framework for analyzing the data
captured by a camera in order to detect, track, and interpret visual patterns (Szeliski
2022). When applied to human behavior, these systems quantify nonverbal cues in the face
and body that reflect affective valence, attentional focus, motor coordination, and other
key psychological processes. Examples of such cues include: (1) Facial behaviors, such as
smiling, frowning, and brow raising; (2) Ocular cues, such as gaze direction, pupil dilation,
and tearing; (3) Head and body movements, such as nodding, fidgeting, and psychomotor
slowing; (4) Postural signals, such as slumping, leaning away, and crossing the arms; and
(5) Gestures, such as pointing, shrugging, and self-touching.

Computer Vision: A
computational
framework for
analyzing visual
information from
images or video,
including the
quantification of
expressive behavior.

Next, speech signal processing (SSP) is a computational framework for analyzing
data captured by a microphone in order to detect and quantify vocal patterns (Tan &
Jiang 2018). When applied to human behavior, these systems prioritize the manner of
speech over its content, quantifying nonverbal cues that reflect affective intensity, cognitive
load, physiological arousal, etc. Examples of such cues include: (1) Prosodic features,
such as pitch, loudness, and intonation; (2) Voice quality, such as breathiness, tension,
and hoarseness; (3) Temporal dynamics, such as speech rate, pauses, and response latency;
(4) Articulatory-phonetic features, such as precision, disfluencies, and phonetic variation;
and (5) Nonverbal vocalizations, such as sighing, laughing, and groaning.

Speech Signal
Processing: A
computational
framework for
extracting and
analyzing vocal
features from audio
recordings of speech.

Finally, natural language processing (NLP) is a computational framework for ana-
lyzing data captured through writing or speech transcription in order to detect and interpret
patterns of language use (Jurafsky & Martin 2025). When applied to human behavior, these
systems quantify linguistic features that reflect emotional content, cognitive style, commu-
nicative intent, etc. Examples of such cues include: (1) Lexical choice, such as the use of
affective words, self-referential terms, and absolutist expressions; (2) Syntactic structure,
such as sentence complexity, fluency, and grammatical accuracy; (3) Semantic coherence,
such as topic relevance, consistency, and conceptual linkage; (4) Pragmatic markers, such as
emotional tone, sarcasm, and social appropriateness; and (5) Discourse organization, such
as narrative structure, turn-taking patterns, and referential clarity.

Natural Language
Processing: A
computational
framework for
analyzing the
content and
structure of spoken
or written language.
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These frameworks offer complementary insights into expressive behavior by analyzing
distinct but interrelated channels of communication. Yet relying on a single modality may
miss both valuable information available in other channels and the richer meanings that
emerge when modalities interact. Multimodal approaches seek to combine information
from multiple modalities to improve representation, address data gaps, and enable better
learning (Liang et al. 2024). Interactions between modalities can be especially informative
for interpreting mixed emotional states or resolving ambiguity in social intent.

Multimodal
approaches:
Modeling
approaches that
combine multiple
modalities, such as
visual, audio, and
text signals.

3.3. Computational Methods
To extract meaningful information from records of expressive behavior, each computational
framework relies on machine learning methods tailored to the properties of its input data.
This section outlines how these methods are used across video, audio, and text data, distin-
guishing between traditional approaches based on theory-derived features and more recent
approaches based on deep learning. We also highlight advances in multimodal fusion, where
information from multiple channels is combined to support richer, more robust models.

3.3.1. Machine learning methods. Across computational frameworks, expressive behaviors
are analyzed using statistical and machine learning methods that learn patterns from
data in service of the goals described in subsection 3.1. Statistical methods are often
favored for explanation, given their emphasis on hypothesis testing and the quantification
of uncertainty, whereas machine learning methods are increasingly preferred for tasks such
as prediction, discovery, and generation (Breiman 2001). Although new “interpretable”
machine learning techniques hold promise, the field remains in active development and is
fraught with conceptual ambiguities and risks of misinterpretation (Henninger et al. 2025).

Machine Learning:
Computational
methods that
optimize a
performance
criterion, typically
for prediction or
pattern discovery,
using example data
from the domain.

Traditional approaches to machine learning analyze “hand-crafted features,” which are
measurable properties of the data specified by researchers based on theory and domain
knowledge. For the analysis of expressive behavior, these features might include landmark
positions, pitch contours, or linguistic word counts. While researchers decide which features
to include, their relative importance and interactions are learned from the data using various
algorithms. When labeled examples are available during training (e.g., images annotated
as “smile” or “non-smile” for classification tasks or patient records with symptom severity
rated on a continuous scale for regression tasks), supervised learning algorithms such as
support vector machines or random forests can learn to predict behavioral constructs or
clinical outcomes in new data using only the features. In the absence of labeled examples,
unsupervised learning algorithms such as k-means clustering and non-negative matrix fac-
torization can uncover latent patterns or groupings in the features, supporting the discovery
of novel subtypes or behavioral profiles in the data (Hastie et al. 2009).

Deep learning methods, which underlie most modern artificial intelligence (AI) tools,
learn abstract, hierarchical representations of data directly from raw or minimally processed
input (Goodfellow et al. 2016). Relying less on expert human knowledge and hand-crafted
features, these models discover and optimize their own internal features during training,
often capturing complex patterns that are difficult to specify manually (e.g., nonlinear
dependencies across time or modality). Architectures such as convolutional neural networks,
recurrent neural networks, and transformers have demonstrated strong performance across
a range of relevant tasks (LeCun et al. 2015). These models are especially powerful for large-
scale prediction and generation, and are increasingly used in discovery-oriented work. Yet
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their reliance on large labeled datasets and high computational demands can be prohibitive,
particularly for behavioral and clinical applications where such resources are limited.Deep learning:

Computational
methods using
multilayer neural
networks to learn
progressively more
complex
representations from
raw data, typically
for prediction or
generation.

One promising solution to these challenges is transfer learning, a general paradigm
for leveraging knowledge from one task (i.e., computational goal) or domain (i.e., type or
source of input data) to improve learning in another (Pan & Yang 2010, Weiss et al. 2016).
This approach is especially useful in fields like psychology, where data and labels are often
scarce or expensive to obtain. One common transfer learning strategy is to pre-train a
model on a large, general-purpose dataset (e.g., millions of images labeled for whether they
depict a person) and then refine that training using a smaller, task-specific dataset involving
the same type of input (e.g., hundreds of images labeled for whether they depict a smiling
face), a process known as fine-tuning. Another strategy is multi-task learning, in which a
model is trained on several related tasks simultaneously (e.g., detecting both anxiety and
depression from the same speech recordings). This approach can improve performance by
helping the model identify features that are shared across conditions as well as those that are
distinct, facilitating more accurate and nuanced differentiation. A third approach, domain
adaptation, is used when the task remains the same but the domain differs, e.g., adapting
a model trained to detect psychological distress during clinical interviews, where speech is
formal and guided by a fixed protocol, to perform well on naturalistic conversations, which
are more spontaneous and variable in language and tone.

Transfer learning:
Computational
methods that use
knowledge from one
task or domain to
improve performance
on another.

3.3.2. Computer vision methods. Analysis of expressive behaviors in the visual modality
is usually based on pixel-based representations of images (e.g., video frames). Over time,
methods have evolved from simple and interpretable hand-crafted features, to intermediate
representations based on models of facial or bodily structure, to more complex and powerful
but less transparent deep learning approaches.

Hand-crafted visual features include properties such as shape, texture, and motion,
derived using manually defined descriptors grounded in perceptual theory (Palmer 1999).
Examples include the locations of landmark points such as the outlines of the mouth and
eyes (Kazemi & Sullivan 2014), appearance descriptors like Gabor wavelets and local binary
patterns (Tian et al. 2002, Zhao & Pietikainen 2007), and motion estimators such as optical
flow (Horn & Schunck 1981). These approaches are effective in controlled settings but are
sensitive to variation in lighting, head pose, and identity.

Model-based representations in CV use parametric models to track the shape and config-
uration of expressive anatomy over time. Techniques such as 3D morphable models (Blanz
& Vetter 1999), active appearance models (Cootes et al. 2001), and skeletal pose estimators
(Loper et al. 2015) fit deformable templates to faces, hands, or bodies. These methods
incorporate domain knowledge (e.g., anatomical constraints) and can perform well on small
datasets, but often struggle in less structured environments. Model-based approaches to
facial expression analysis have been strongly influenced by Facial Action Coding System
(Ekman et al. 2002), an anatomically grounded system for describing facial movements in
terms of underlying muscle actions. It has guided both manual labeling and the development
of model-driven features used in computational analysis (Cohn & Ekman 2005).

Deep learning approaches in CV learn visual patterns directly from raw image data.
These models have shown strong performance in tasks such as expression recognition (Li
& Deng 2022), gaze estimation (Cheng et al. 2024), and pose tracking (Zheng et al. 2023),
often learning abstract features that generalize across varied conditions. However, their
reliance on large labeled datasets presents a persistent challenge in behavioral research. To
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address this, recent work has leveraged motion-capture datasets and 3D model-based data
synthesis to generate large-scale training data with automatically produced pose annota-
tions (Zheng et al. 2023). These strategies reduce the burden of manual labeling and expand
the diversity of training data. In parallel, advances in deep learning architectures’ inter-
nal representations, such as graph convolutional neural networks and multi-task learning
paradigms, have increased accuracy and robustness (e.g., Hu et al. 2025).

3.3.3. Speech signal processing methods. Analysis of expressive behavior in the audio
modality is usually based on raw audio waveforms or derived time-frequency represen-
tations. Over time, these methods have evolved from simple and interpretable hand-crafted
features, to intermediate models grounded in theories of speech production and prosody, to
more flexible but less transparent deep learning approaches.

Hand-crafted vocal features aim to summarize variation in pitch, loudness, timing, and
spectral characteristics of the voice. Commonly used acoustic-prosodic features include
fundamental frequency, energy, speech rate, pause structure, jitter, shimmer, harmonics-
to-noise ratio, formants, and mel-frequency cepstral coefficients (Eyben 2016, Eyben et al.
2016). These features are typically extracted from very short time windows, providing a
moment-to-moment account of vocal dynamics. Known as “low-level descriptors” (LLDs),
they are usually aggregated over time into summary statistics called “high-level descriptors”
(HLDs), which serve as input to machine learning models. These features are widely used
due to their efficiency and interpretability, but can be sensitive to differences in speaker
identity, language, or recording quality (Low et al. 2020).

Model-based representations in SSP draw on theories of speech production and prosody
to explain how acoustic signals arise from underlying physiological or phonetic and articu-
latory processes. Unlike hand-crafted features, which summarize surface-level signal prop-
erties, these models aim to capture the underlying generative mechanisms of speech. The
source–filter model, for example, separates the speech signal into a glottal source and vocal
tract filter, providing a general framework for analyzing speech production (Fant 1971). It
supports a range of applications, including the analysis of voice quality characteristics such
as breathiness or strain (Ladefoged & Johnson 2014). Other approaches use rule-based or
statistical models to represent prosodic structures, such as pitch contours, rhythm, stress,
and timing, that are linked to emphasis, emotion, or conversational dynamics (e.g., Xu
2013, Scherer 2003). These methods are grounded in theory and offer clear interpretability
but can be difficult to scale and may require language-specific customization.

Deep learning approaches in SSP have advanced tasks such as emotion recognition and
speaker state classification by learning complex patterns directly from raw audio or spectro-
gram inputs (Latif et al. 2023). Like their visual counterparts, these models require large
labeled datasets and are often difficult to interpret. Speech signals also present unique
challenges, including rapid temporal dynamics and variability across speakers and record-
ing environments. To address these issues, recent models use architectures that explicitly
capture temporal dependencies (e.g., recurrent or convolutional networks, and long short-
term memory modules) or leverage pretraining on large-scale speech datasets to support
transfer learning to smaller, behaviorally focused datasets (Chen & Rudnicky 2023). In
parallel, deep learning has also driven major advances in automatic speech recognition,
enabling high-accuracy transcription of spoken language. Tools such as Whisper (Radford
et al. 2023) and Parakeet (Galvez et al. 2024) can efficiently generate transcripts from raw
audio with minimal supervision, supporting downstream analysis of verbal content.
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3.3.4. Natural language processing methods. Analysis of expressive behavior in the text
modality focuses on patterns of language use, including word choice, grammar, meaning,
and discourse structure. Over time, these methods have evolved from hand-crafted linguistic
features, to semantic and discourse models, to deep learning approaches that derive high-
dimensional language representations from large-scale data.

Hand-crafted linguistic features are derived from transcribed speech or written text using
predefined rules grounded in linguistic and psychological theory. These features include
word counts, part-of-speech tags, syntactic complexity, lexical diversity, sentiment polarity,
and topic distributions. Tools such as LIWC (Boyd et al. 2022), Coh-Metrix (McNamara
et al. 2014), and various affective lexica provide interpretable summary scores linked to
psychological traits, emotional states, and social processes. These methods are efficient,
theory-informed, and easy to interpret, but they often miss contextual nuance and depend
on accurate transcription and language-specific resources (Eichstaedt et al. 2021).

Model-based representations in NLP focus on capturing meaning and structure at the
levels of semantics and discourse. These include techniques such as topic modeling, seman-
tic networks, and coherence models that track how ideas develop, shift, and relate across
stretches of text (Churchill & Singh 2022, Segev 2022, Barzilay & Lapata 2008). Such rep-
resentations enable the identification of narrative themes, relational framing, and discourse
organization. Compared to hand-crafted features, they offer greater flexibility and contex-
tual sensitivity, capturing meaning that emerges across sentences rather than at the word
or phrase level. However, they often require careful tuning and domain adaptation, and
their interpretability can vary. Outputs may be sensitive to text length, quality, and style,
particularly in informal or noisy data, such as transcripts of spontaneous speech.

Deep learning approaches in NLP learn rich, contextualized representations of language.
Transformer-based models such as BERT (Devlin et al. 2019), RoBERTa (Liu et al. 2019),
and domain-specific variants (e.g., ClinicalBERT; Turchin et al. 2023) generate embeddings
that capture subtle cues related to affect, tone, and intent. These representations support a
range of downstream prediction and discovery tasks, including emotion classification, per-
sonality inference, identification of latent themes, and clustering of communication styles.
Recently, large language models (LLMs) have enabled generative applications, including
narrative summarization, conversational reasoning, and “few-shot” or “zero-shot” learning
(i.e., making predictions with little or no labeled data; Brown et al. 2020). While these mod-
els offer impressive flexibility and performance, they are also resource-intensive and difficult
to interpret. Moreover, most LLMs are developed and trained primarily in English, limiting
their effectiveness in other languages without substantial adaptation. Although core NLP
tasks (e.g., part-of-speech tagging) are increasingly supported in non-English languages,
clinical applications require additional capabilities, such as recognizing medical terminol-
ogy, abbreviations, and language-specific named entities, which remain underdeveloped in
many contexts (Névéol et al. 2018). Based on a search of PubMed-indexed papers, non-
English clinical NLP efforts have grown in the last decade, though important gaps persist
(see Supplemental Figure S1). Since domain-specific tools (such as affect analysis) are also
more advanced for English, texts in different languages are often automatically translated
into English for further analysis (e.g., Halfon et al. 2021).

Large Language
Model: A deep
learning model
trained on massive
text datasets to
analyze, predict, and
generate language.

3.3.5. Multimodal Fusion. Multimodal fusion refers to the integration of multiple data
streams to improve computational analysis. Each modality (ideally) provides unique and
complementary information, and combining them can yield richer representations of psy-
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chological processes and more accurate, generalizable models. A comprehensive framework
is provided by Baltrušaitis et al. (2018) and Liang et al. (2024), which outline theoretical
foundations and practical implementations of multimodal fusion.

Multimodal systems differ in when and how they combine signals from each modality.
In early fusion, features from each modality (such as pitch, word embeddings, and facial
movements) are combined at the input stage, before any modeling occurs. This approach
allows for learning cross-modal interactions from the start but can be limited by difficulties
aligning signals in time or managing very different feature types. In contrast, late fusion
involves analyzing each modality separately and then merging the resulting outputs, e.g., by
averaging predictions or using voting rules. This strategy is modular and easier to interpret,
but may overlook the way different cues influence each other. Finally, hybrid fusion sits
between these extremes, combining partially processed representations from each modality.
These models often incorporate mechanisms such as attention and alignment to capture
relationships across modalities while preserving the distinct structure of each input. In
this context, attention refers to a model’s ability to weigh different parts of the input
based on their relevance, while alignment involves mapping specific elements of the input
to corresponding elements of the output (Bahdanau et al. 2015).

Recent advances in deep learning have made hybrid fusion increasingly effective, allowing
systems to model the temporal, semantic, and emotional interplay among different modal-
ities. This means that rather than treating each signal in isolation, the system learns how
features interact to convey meaning over time. For example, it can capture how a sarcastic
tone or raised eyebrow alters the interpretation of an otherwise neutral sentence. Modern
architectures supporting this include memory-augmented recurrent networks (which track
and integrate past information), co-attention transformers (which jointly focus on relevant
parts of multiple modalities), and graph-based models (which represent relationships among
modalities as structured, interconnected patterns) (Shen et al. 2024). These systems have
been applied to a range of mental health tasks, including emotion recognition, depression
detection, and therapeutic dialogue analysis (Sadeghi et al. 2024).

Despite these advances, multimodal systems still face several key challenges. Synchro-
nizing data streams, managing computational demands, and modeling complex interactions
across modalities remain difficult. Performance often degrades when input from one modal-
ity is missing or compromised (e.g., due to background noise in audio or occluded facial
expressions in video). To address these issues, researchers have increasingly turned to self-
supervised learning, a technique in which models learn useful patterns and representations
from raw data by solving auxiliary tasks (e.g., predicting missing segments or aligning infor-
mation across modalities) without requiring manual labels. This approach can reduce the
need for large annotated datasets while improving the system’s ability to generalize across
real-world variability (Kaya et al. 2017).

4. Illustrative Literature Review
While a comprehensive review of all interdisciplinary work applying computational analysis
of expressive behavior to clinical assessment is possible, such a review would be prohibitively
long and poorly suited to the goals and format of the current article. Instead, we adopt a
two-part strategy that balances depth and breadth. First, we analyzed all peer-reviewed
articles published in IEEE Transactions on Affective Computing, a flagship journal that
consistently features state-of-the-art work at the intersection of computational modeling
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of human behavior and clinical science. While not exhaustive, this focused sample offers a
representative snapshot of empirical developments over time. Second, we broaden our scope
by summarizing key conclusions from selected reviews published across diverse venues. This
dual approach enables us to identify emerging patterns and gaps in the field while drawing
on the insights of prior syntheses to contextualize current trends.

4.1. Journal-Specific Review
Across the 1321 published and Early Access articles in the IEEE Transactions on Affective
Computing journal from its inception in 2010 through June 6, 2025, a total of 101 articles
were coded by J.M.G. or D.A.Y. as relevant to both computational analysis of expressive
behavior and clinical assessment. Thus, this topic comprises 8% of the work in this journal.

Six of the relevant papers (6%) were review articles, and the remainder (94%) reported
the results of novel empirical research. Figure 1a shows that the cumulative number of
papers on this topic has increased exponentially over time, F (1, 14) = 950.8, p < .001.

Our coding of the clinical topics examined in these papers yielded nine main categories,
listed here in descending order of frequency: depression and unipolar mood conditions,
autism and related developmental conditions, stress not related to a specific condition,
mania and bipolar mood conditions, dementia and neurodegenerative conditions, suicide
and self-injurious thoughts and behaviors, anxiety and fear-related conditions, trauma and
posttraumatic stress, and psychosis including schizophrenia and formal thought disorder.
As shown in Figure 1b, these topics were not equally represented; the depression category
alone accounted for over half of the empirical papers (54%). Two topics appeared only
once and were grouped into an other category: distressed couples’ level of conflict during
discussion tasks and clients’ level of engagement during motivational interviewing.

Unimodal studies, which examine a single modality of data (i.e., audio, video, or text),
were more common (73%) than multimodal studies (27%). As shown in Figure 1c, unimodal
video studies were most prevalent (39%), followed by text (18%) and audio (16%). Mul-
timodal studies most often combined audio and video (11%) or all three modalities (9%),
while combinations of audio and text (4%) or video and text (3%) were less frequent.

While caution is warranted in generalizing beyond this journal, certain clinical topics
showed consistent patterns in modality use. The anxiety, dementia, trauma, and psychosis
topics more often incorporated the audio modality (i.e., in over 33% of papers). The anxiety,
autism, depression, and psychosis topics tended to favor the video modality, whereas the
mania and suicide topics most often used the text modality. Notably, no papers in this
journal have used the text modality to study trauma or psychosis. However, such work
appears in other venues, especially for psychosis, as highlighted in subsection 4.4.

4.2. Computer Vision Reviews
Pampouchidou et al. (2019) systematically review over 60 studies that assess depression
based on facial expressions, head movement, and postural cues. They highlight the promise
of automated approaches for detecting depressive symptoms, but note that such systems
remain far from clinical deployment. Key limitations include narrow sample diversity, a
lack of standardized protocols, and insufficient validation in naturalistic environments. The
authors recommend that future work prioritize large-scale, longitudinal studies, accommo-
date individual variability, and focus on building systems that are interpretable, reliable,
and clinically grounded.
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de Belen et al. (2020) systematically review 83 studies that assess autism using vi-
sual markers such as gaze patterns, facial expressions, body movements, and stereotyped
behaviors, along with 11 additional studies using neuroimaging. These approaches show
strong promise for identifying core features of autism, particularly in children. However,
most studies to date have been conducted in artificial, highly controlled environments. The
authors emphasize the need for benchmark datasets, more ecologically valid settings, and
longitudinal designs to better capture developmental trajectories and individual variability.

Jiang et al. (2022) systematically review 17 studies that use facial behavior and head
motion to assess schizophrenia, particularly negative symptoms such as blunted affect. They
argue that these methods offer a valuable means of objectively quantifying subtle behavioral
changes, but the field is still in its early stages. Small and homogeneous samples, inconsis-
tent clinical labeling, and limited alignment with clinical outcomes limit generalizability. To
address these gaps, the authors advocate for more diverse datasets, greater methodological
consistency, and stronger integration with diagnostic and therapeutic frameworks.

4.3. Speech Signal Processing Reviews
Cummins et al. (2015) and Cummins et al. (2018) provide narrative reviews of studies
that apply speech analysis to health-related outcomes, including autism, depression, and
suicide risk. They emphasize that speech offers a non-invasive and accessible means of
monitoring psychological states, and highlight how deep learning has expanded the modeling
capabilities of such systems. Despite this promise, clinical application remains limited due
to data sparsity, inconsistent protocols, and the opaqueness of many models. The authors
underscore the need for multimodal approaches, standardized procedures, and validation in
real-world settings to build more robust and clinically meaningful tools.

Low et al. (2020) systematically review 127 studies that use acoustic features of speech to
assess a wide range of psychiatric conditions, including depression, schizophrenia, bipolar
disorder, posttraumatic stress disorder, anxiety, and eating disorders. They find strong
potential for speech-based technologies to enable remote, scalable mental health assessment,
but point to persistent barriers such as limited demographic and linguistic diversity, poor
model generalizability, and challenges in interpreting system outputs. To improve reliability
and impact, the authors advocate for transdiagnostic and longitudinal designs, attention to
algorithmic fairness, and the adoption of reproducible research practices.

Ding & Zhang (2023) provide a narrative review of studies on prosodic features of
speech in mental health, focusing on conditions such as depression, schizophrenia, bipolar
disorder, and autism. They argue that prosody provides a rich but underutilized channel for
detecting cognitive and emotional dysfunction. However, inconsistencies in how prosodic
cues are defined, extracted, and interpreted, along with small sample sizes and limited
use of longitudinal designs, have slowed progress. The authors call for stronger theoretical
foundations, greater methodological rigor, and closer integration with other behavioral data
streams to fully realize the clinical potential of prosodic analysis.

4.4. Natural Language Processing Reviews
Zhang et al. (2022) provide a narrative review of studies that apply NLP techniques to
detect a broad range of mental health conditions, including depression, suicide risk, bipolar
disorder, schizophrenia, and autism. These studies draw from diverse textual sources such
as social media, clinical notes, and interviews. The authors note a clear trend toward deep
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learning methods but emphasize that the field still faces key challenges, including limited ac-
cess to high-quality datasets, especially for non-English languages, inconsistent annotation
standards, and a narrow focus on classification tasks. They call for increased investment in
multilingual and multi-domain resources, greater emphasis on model interpretability, and
methodological innovation that moves beyond current task conventions.

Harvey et al. (2022) provide a scoping review of 35 studies using NLP to assess bipolar
disorder, focusing on how language use varies across manic, depressive, and euthymic states.
They find that linguistic markers such as verbosity, syntactic complexity, and semantic
coherence fluctuate with mood and may support automated monitoring. However, existing
work is constrained by small and non-representative samples, inconsistent labeling practices,
and unclear connections between linguistic features and clinical diagnoses. The authors
emphasize the need for standardized data collection protocols, improved annotation of mood
states, and longitudinal designs that can capture within-person change.

Deneault et al. (2024) provide a scoping review of 18 studies applying NLP techniques
in schizophrenia research, identifying six main use cases: predictive modeling, analysis of
linguistic features, coherence metrics, clinical decision support, interview analysis, and social
media monitoring. They highlight the potential of NLP to quantify language disorganization
and formal thought disorder, particularly through measures of semantic coherence and
speech graph structure. However, progress has been limited by small sample sizes, diagnostic
ambiguity, and limited clinical validation. The authors recommend more clinically grounded
research designs, larger and more representative datasets, and shared benchmarks to support
comparison and replication.

Although Alzheimer’s disease is primarily a neurocognitive rather than psychiatric con-
dition, it illustrates the broader potential of NLP methods for detecting subtle cognitive
impairments. In a systematic review of 79 studies, Shakeri & Farmanbar (2025) examine
how language features can serve as early indicators of decline in individuals with the dis-
ease. Lexical, syntactic, and semantic markers, such as vocabulary richness, coherence, and
sentence structure, have shown promise as indicators of disease progression. However, the
field continues to face major barriers, including fragmented datasets, limited cross-study
comparability, and poor integration with clinical workflows. The authors emphasize the
need for shared benchmarks, closer clinical collaboration, and models that are both robust
and generalizable across populations and settings.

4.5. Multimodal Reviews
Recent reviews by Liang et al. (2019) and Khoo et al. (2024) synthesize research on multi-
modal digital phenotyping, which combines behavioral signals (e.g., facial expressions, vocal
prosody, and language use) with passive sensing data from personal devices (e.g., GPS for
location tracking and accelerometry for activity monitoring). Both reviews emphasize the
promise of integrating video, audio, and text modalities with ambient data streams to en-
able remote, continuous, and context-aware assessment of mental health conditions such
as depression, anxiety, and schizophrenia. Liang et al. (2019) offer a broad conceptual
overview, arguing that fusing diverse data sources can yield richer behavioral representa-
tions and more scalable insights. However, they caution that methodological fragmentation
and ethical concerns—particularly around privacy and consent—pose significant barriers
to real-world deployment. Khoo et al. (2024), in a systematic review of 184 empirical
studies, echo these themes but focus more on predictive performance, concluding that mul-
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timodal systems consistently outperform unimodal ones in both accuracy and ecological
validity. Yet, they too highlight major limitations, including inconsistent data collection
protocols, lack of standardized feature representations, and minimal integration with clinical
workflows. Both reviews call for benchmark datasets, ethical safeguards, interdisciplinary
collaboration, and alignment with clinical priorities to advance the field.

Al Sahili et al. (2025) offer a detailed technical survey of multimodal machine learn-
ing methods in mental health. They discuss a range of modalities (including text, audio,
video, physiology, and neuroimaging) while particularly highlighting scalable, noninvasive
signals such as text, audio, and video. Their analysis explores deep learning trends, espe-
cially multimodal transformers and attention-based fusion, showing how these architectures
can compensate for weaknesses in individual modalities and capture complex intermodal
dynamics. They also identify ongoing challenges: data heterogeneity, lack of cross-study
comparability, and scarcity of large, annotated datasets, and they advocate for theoretical
integration and ethical safeguards on privacy, consent, and algorithmic bias.

5. Discussion
The use of computational methods to analyze expressive behavior in clinical settings holds
enormous promise, but also presents critical challenges. As this field matures, researchers
must navigate conceptual, methodological, ethical, and practical tensions that span multiple
disciplines. This section synthesizes key limitations of current approaches, including issues
of data quality, labeling, bias, and integration with clinical needs. It also outlines oppor-
tunities for more inclusive, theory-driven, and collaborative frameworks that can improve
both the scientific and clinical value of these tools.

5.1. Data and Sampling Issues
Many studies in this field rely on categorical diagnostic frameworks (e.g., DSM or ICD)
to define inclusion criteria and compare individuals with a single diagnosis to healthy or
typically developing controls. These sampling strategies aim to isolate disorder-specific
features, but without clinical control groups or dimensional characterization, observed dif-
ferences may instead reflect general psychological distress. The result is often limited insight
into the specificity or generality of predictive features.

Samples are often drawn from university or urban clinical settings in high-income coun-
tries, limiting the cultural, linguistic, and socioeconomic diversity of participants. Yet ex-
pressive behavior varies across communities, shaped by differences in communication styles,
emotional norms, and social expectations (Matsumoto et al. 2008). As a result, models de-
veloped in one context may not generalize well to others. This issue is particularly acute
for language-based models, which are typically trained on English-language data and may
not transfer effectively to other languages or dialects. These challenges are compounded by
small and demographically narrow samples, which increase the risk of overfitting and limit
generalizability across age groups, genders, and clinical subtypes.

Addressing these limitations will require greater coordination and shared infrastruc-
ture. The Audio/Visual Emotion Challenge (AVEC) has demonstrated the value of shared
tasks in mental health prediction, helping to standardize preprocessing, evaluation, and
benchmarking procedures (e.g., Valstar et al. 2013, Ringeval et al. 2019). Building on this
foundation, future efforts should involve clinical scientists more centrally in task design,
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outcome selection, and interpretation. Shared datasets that span—and enable performance
comparisons across—diagnostic categories, demographic groups, and recording conditions
are essential for developing more robust, equitable, and clinically meaningful models.

5.2. Measurement Challenges
Even when samples are well chosen and adequately sized, the reliability and validity of
outcome labels pose major obstacles to model development and evaluation (Flake & Fried
2020). Clinical labels are often noisy due to variability in assessment practices, diagnostic
thresholds, and limited inter-rater agreement; even structured interviews can yield incon-
sistent results. Many studies instead rely on screening tools, using cutoffs to assign binary
labels. While efficient, this approach introduces misclassification error, as screeners are
not designed to distinguish true cases with clinical precision. False positives and negatives
distort model training and evaluation, potentially inflating or masking observed effects.
More reliable strategies, such as consensus ratings, multi-source validation, or continuous
symptom measures, are needed to improve model validity.

Categorical systems like DSM and ICD provide operational clarity but may obscure
individual variation and conflate shared features across conditions. Dimensional frameworks
such as RDoC, HiTOP, and network models offer more nuanced or mechanistic views, better
capturing symptom overlap and heterogeneity common in clinical populations. However,
these alternatives bring their own challenges, including inconsistencies in how constructs are
defined and measured, which can complicate model development and comparison. Without
a clear gold standard, it is difficult to evaluate validity or determine which targets are most
appropriate. Clarifying and justifying nosological choices will be essential as the field moves
toward more flexible representations of mental health.

In addition to challenges with outcome labels, the behavioral features extracted from
raw data also present significant measurement difficulties. Real-world data often include
artifacts that challenge computational analysis. Visual occlusions, extreme head poses,
poor lighting, and low-resolution video can interfere with the extraction of facial or bodily
features. Likewise, background noise, low-quality audio, and overlapping speech reduce
the reliability of acoustic features and transcription. These issues are especially common
in naturalistic or remote settings and can substantially degrade model performance. Their
impact may also be uneven, e.g., young children, older adults, or individuals with disabilities
may be more likely to produce data with such artifacts. Addressing these challenges will
require robust preprocessing, artifact-aware modeling strategies, and evaluation procedures
that account for data quality.

5.3. Interdisciplinary Challenges
Collaboration between clinical and computational communities is often hindered by dif-
ferences in priorities, terminology, and methodological assumptions. Clinicians tend to
emphasize interpretability, theoretical grounding, and clinical utility, while computational
work often prioritizes predictive accuracy, scalability, and technical novelty. These differing
goals can result in models optimized for metrics that lack clinical meaning. For example, a
machine learning model may operationalize “engagement” in terms of observable behaviors
like eye contact or speech duration, whereas clinicians typically require a more conceptually
grounded definition, such as emotional involvement, therapeutic rapport, or responsiveness
to treatment. Structural barriers further limit cross-pollination: researchers are typically
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trained in discipline-specific silos, publish in separate venues, and work on different timelines
(e.g., computational fields often emphasize frequent conference papers, while clinical fields
publish more slowly in journals). Even peer review itself poses challenges: it is often difficult
to identify reviewers with expertise spanning both domains, and there are few incentives for
providing interdisciplinary review service, whether for journal articles or grant proposals.
Advancing the field will require greater cross-disciplinary training, shared language, and
collaborative platforms that support both methodological rigor and clinical relevance.

5.4. Ethical Considerations
Behavioral data used in computational research, such as video, audio, and text, are highly
sensitive and often personally identifiable. Unlike standard clinical measures, these data
can reveal subtle patterns in how people express themselves, interact with others, and move
through their environments. As a result, informed consent must go beyond the moment
of data collection to address long-term issues, such as how data will be stored, reused, or
shared. Even when identifying details are removed, linking datasets or using certain features
can make it possible to re-identify individuals. Safeguards like limiting how much data is
collected, restricting who can access it, and deleting it after a set time can reduce these
risks. Technical strategies such as federated learning (training models across sites without
moving the data) and differential privacy (adding noise to protect identity) offer promising
solutions, though they may come with trade-offs in accuracy or transparency (Kairouz et al.
2021). Following ethical frameworks like the Unified Five Principles (Floridi & Cowls 2022),
researchers must ensure that participants understand how their data will be used and what
risks are involved (see Table 2 as well as the supplemental materials).

Models trained on limited or non-representative samples can reproduce or worsen ex-
isting social inequalities. If performance differences across demographic groups are not
carefully examined, these systems may produce inaccurate or unfair results, particularly
for groups already underserved by the healthcare system. In mental health settings, for
instance, cultural norms around emotional expression or symptom reporting may affect
how well a model works across different populations (Timmons et al. 2023). Bias can be
introduced during data collection, in how data are labeled, or through the model itself. It
may also vary based on combinations of characteristics like race, gender, age, or disability.
Developers should routinely evaluate whether models perform equitably across groups and
consider the specific harms of false positives and false negatives in different clinical set-
tings (Sogancioglu et al. 2024). Ensuring fairness requires input from clinicians, community
members, and people with lived experience.

As interest grows in using these tools in clinical practice, there is still little clear guidance
on how to regulate, evaluate, or oversee them. Many systems are built and tested in research
labs, without the clinical trials or ongoing monitoring typically required for medical tools.
Yet once deployed, these models may influence decisions about diagnosis, treatment, or
access to care. When errors occur, it is often unclear who is responsible: the clinician, the
developer, or the organization deploying the system. These challenges are worsened by the
opaque nature of many machine learning models, especially complex systems that offer little
insight into how decisions are made. Building trust in clinical settings will require clearer
rules about responsibility and systems that can explain their decisions in ways that make
sense to patients, clinicians, and developers alike (Floridi & Cowls 2022).
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5.5. Future Directions
Addressing the conceptual and practical challenges outlined above will require coordinated
efforts to build more inclusive, rigorous, and clinically grounded approaches. A central pri-
ority is the development of large, diverse, and multimodal datasets built on standardized
protocols and shared benchmarks. Such resources can support more generalizable findings,
enable stratified evaluation across subgroups, and reduce fragmentation in methods and
outcomes. Just as important as the data themselves are the labels they carry. Improved
labeling practices—such as consensus ratings, multi-source validation, and continuous symp-
tom tracking—can help mitigate noise and better reflect the dimensional nature of mental
health.

Future models must also be better aligned with both clinical theory and real-world
practice. Many current systems prioritize predictive performance but lack grounding in
established psychological constructs or relevance to the needs of end users. Integrating
conceptual frameworks from psychology and psychiatry can improve interpretability and
validity, while attention to clinical workflows, constraints, and decision-making contexts
can enhance usability and trust. Technically sound models that are conceptually opaque or
logistically impractical are unlikely to be adopted or sustained in clinical settings.

Rather than replacing clinicians, the most promising computational tools will augment
clinical decision-making. When thoughtfully designed, these systems can improve consis-
tency, reduce cognitive burden, and surface patterns that might elude human judgment. But
achieving this vision requires more than accuracy; it demands models that are transparent,
actionable, and tailored to specific use cases. Clinical utility should not be an afterthought
but a central design goal.

Finally, progress in this field depends on sustained interdisciplinary collaboration. Train-
ing programs, research networks, and funding initiatives should promote integration across
psychology, psychiatry, computer science, and ethics. Common standards for model de-
velopment, validation, and reporting can improve transparency and comparability. And
by involving clinicians, patients, and communities throughout the research process, com-
putational assessment can become not only more sophisticated but also more meaningful,
responsible, and equitable.

5.6. Conclusions
Computational analysis of expressive behavior offers a powerful set of tools for advancing
mental health assessment, but its successful application depends on thoughtful alignment
with clinical science. This paper aimed to provide an accessible conceptual framework for
understanding these methods, bridging clinical and computational perspectives to clarify
key ideas and highlight their points of intersection. We began by reviewing foundational
goals and approaches in clinical assessment, then described how computational techniques
from computer vision, speech signal processing, and natural language processing are being
applied to study expressive behavior. Drawing on recent research, we illustrated how these
tools are being used to address core assessment goals. Finally, we synthesized conceptual,
methodological, and ethical challenges that must be addressed to ensure these systems are
valid, equitable, and clinically meaningful. By prioritizing theory, context, and collaboration
alongside technical performance, future work can help realize the potential of computational
methods to support more precise, scalable, and person-centered mental health care.
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SUMMARY POINTS

1. Clinical assessment relies on questionnaires, interviews, and observation, but each
has well-documented limitations in reliability, validity, and scalability.

2. Computational methods (e.g., computer vision, speech signal processing, natural
language processing, and machine learning) enable more objective, fine-grained,
and scalable measurement of expressive behavior for clinical assessment.

3. Advances in multimodal approaches, deep learning, and generative AI allow richer
integration of visual, vocal, and linguistic signals, enabling the capture of complex
behaviors and the creation of realistic simulations for training and assessment.

4. A review of the literature shows rapid growth in the field, but most studies remain
unimodal, concentrate on a narrow set of conditions such as depression, and have
yet to fully integrate computational methods into clinical practice.

5. Key challenges include data diversity, measurement quality, interdisciplinary align-
ment, ethical safeguards, and the need for models that are both technically sound
and clinically meaningful.

FUTURE ISSUES

1. Develop large, diverse, multimodal benchmark datasets with standardized proto-
cols, enabling generalization across conditions, demographic groups, and contexts.

2. Improve labeling practices by adopting consensus ratings, multi-source validation,
and dimensional symptom tracking to better capture clinical complexity.

3. Integrate clinical theory and workflow considerations into model design, ensuring
tools are interpretable, actionable, and support rather than replace clinicians.

4. Promote interdisciplinary collaboration of the clinical and computational sciences
through joint training, shared infrastructure, and common reporting standards.
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Shortliffe EH, Sepúlveda MJ. 2018. Clinical Decision Support in the Era of Artificial Intelligence.
JAMA 320(21):2199–2200

Silberman EK, Certa K, Kay A. 2015. The psychiatric interview: Settings and techniques. In
Psychiatry, eds. A Tasman, J Kay, JA Lieberman, MB First, M Riba. John Wiley & Sons, Inc.,
4th ed., 34–55

Simms LJ, Wright AGC, Cicero D, Kotov R, Mullins-Sweatt SN, et al. 2022. Development of
Measures for the Hierarchical Taxonomy of Psychopathology (HiTOP): A Collaborative Scale
Development Project. Assessment 29(1):3–16

Singh JP, Grann M, Fazel S. 2011. A comparative study of violence risk assessment tools: A
systematic review and metaregression analysis of 68 studies involving 25,980 participants. Clinical
Psychology Review 31(3):499–513

Sogancioglu G, Mosteiro P, Salah AA, Scheepers F, Kaya H. 2024. Fairness in ai-based mental health:
Clinician perspectives and bias mitigation, In Proceedings of the AAAI/ACM Conference on AI,
Ethics, and Society, vol. 7, pp. 1390–1400

Spitzer RL. 1983. Psychiatric diagnosis: Are clinicians still necessary? Comprehensive Psychiatry
24(5):399–411

Stone AA, Turkkan JS, Bachrach CA, Jobe JB, Kurtzman HS, Cain VS. 2000. The science of
self-report: Implications for research and practice. Mahwah, NJ: Lawrence Erlbaum Associates

Szeliski R. 2022. Computer vision: Algorithms and applications. Texts in computer science.
Springer, 2nd ed.

Søvold LE, Naslund JA, Kousoulis AA, Saxena S, Qoronfleh MW, et al. 2021. Prioritizing the
Mental Health and Well-Being of Healthcare Workers: An Urgent Global Public Health Priority.
Frontiers in Public Health 9

Tan L, Jiang J. 2018. Digital signal processing: Fundamentals and applications. Academic Press
Tedeschi RG, Kilmer RP. 2005. Assessing Strengths, Resilience, and Growth to Guide Clinical

Interventions. Professional Psychology: Research and Practice 36(3):230–237
Tian Yl, Kanade T, Cohn JF. 2002. Evaluation of Gabor-wavelet-based facial action unit recognition

28 Girard et al.



in image sequences of increasing complexity. IEEE International Conference on Automatic Face
and Gesture Recognition :229–234

Timmons AC, Duong JB, Simo Fiallo N, Lee T, Vo HPQ, et al. 2023. A call to action on assess-
ing and mitigating bias in artificial intelligence applications for mental health. Perspectives on
Psychological Science 18(5):1062–1096

Turchin A, Masharsky S, Zitnik M. 2023. Comparison of BERT implementations for natural lan-
guage processing of narrative medical documents. Informatics in Medicine Unlocked 36:101139

Valstar MF, Schuller BW, Smith K, Eyben F, Jiang B, et al. 2013. AVEC 2013: the continu-
ous audio/visual emotion and depression recognition challenge, In Proceedings of the 3rd ACM
international workshop on Audio/visual emotion challenge, pp. 3–10

Venkatasubramanian G, Keshavan MS. 2016. Biomarkers in psychiatry – A critique. Annals of
Neurosciences 23(1):3–5

Weiss K, Khoshgoftaar TM, Wang D. 2016. A survey of transfer learning. Journal of Big Data
3(1):9

World Health Organization. 2019. International statistical classification of diseases and related
health problems. World Health Organization, 11th ed.

Xu Y. 2013. ProsodyPro - A tool for large-scale systematic prosody analysis, In Proceedings of the
Tools and Resources for the Analysis of Speech Prosody Workshop, pp. 7–10, Aix-en-Provence,
France

Yarkoni T, Westfall J. 2017. Choosing prediction over explanation in psychology: Lessons from
machine learning. Perspectives on Psychological Science 12(6):1100–1122

Zhang T, Schoene AM, Ji S, Ananiadou S. 2022. Natural language processing applied to mental
illness detection: a narrative review. npj Digital Medicine 5(1):46

Zhao G, Pietikainen M. 2007. Dynamic texture recognition using local binary patterns with an ap-
plication to facial expressions. IEEE Transactions on Pattern Analysis and Machine Intelligence
29(6):915–928

Zheng C, Wu W, Chen C, Yang T, Zhu S, et al. 2023. Deep learning-based human pose estimation:
A survey. ACM Computing Surveys 56(1):1–37

www.annualreviews.org • Computational Assessment 29


	Introduction
	Clinical Assessment
	Assessment Goals
	Assessment Frameworks
	Assessment Methods

	Computational Analysis
	Computational Goals
	Computational Frameworks
	Computational Methods

	Illustrative Literature Review
	Journal-Specific Review
	Computer Vision Reviews
	Speech Signal Processing Reviews
	Natural Language Processing Reviews
	Multimodal Reviews

	Discussion
	Data and Sampling Issues
	Measurement Challenges
	Interdisciplinary Challenges
	Ethical Considerations
	Future Directions
	Conclusions


